• Home
  • Oil palm-community conflict mapping in Indonesia: A case for better community liaison in planning for development initiatives

Oil palm-community conflict mapping in Indonesia: A case for better community liaison in planning for development initiatives

Posted by

FTA

Authors: Abram, N.K.; Meijaard, E.; Wilson, K.A.; Davis, J.T.; Wells, J.A.; Ancrenaz, M.; Budiharta, S.;Durrant, A.; Fakhruzzi, A.; Runting, R.K.; Gaveau, D.L.A.; Mengersen, K.

Conflict between large-scale oil-palm producers and local communities is widespread in palm-oil producer nations. With a potential doubling of oil-palm cultivation in Indonesia in the next ten years it is likely that conflicts between the palm-oil industry and communities will increase. We develop and apply a novel method for understanding spatial patterns of oil-palm related conflicts. We use a unique set of conflict data derived through systematic searches of online data sources and local newspaper reports describing recent oil-palm land-use related conflicts for Indonesian Borneo, and combine these data with 43 spatial environmental and social variables using boosted regression tree modelling. Reports identified 187 villages had reported conflict with oil-palm companies. Spatial patterns varied with different types of conflict. Forest-dependent communities were more likely to strongly oppose oil-palm establishment because of their negative perception of oil-palm development on the environment and their own livelihoods. Conflicts regarding land boundary disputes, illegal operations by companies, perceived lack of consultation, compensation and broken promises by companies were more associated with communities that have lower reliance on forests for livelihoods, or are located in regions that have undergone or are undergoing forest transformation to oil-palm or industrial-tree-plantations. A better understanding of the characteristics of communities and areas where different types of conflicts have occurred is a fundamental step in generating hypotheses about why certain types of conflict occur in certain locations. Insights from such research can help inform land use policy, planning and management to achieve more sustainable and equitable development. Our results can also assist certification bodies (e.g. the Roundtable for Sustainable Palm Oil-RSPO, and the Indonesian and Malaysian versions, ISPO and MSPO), non-government-organisations, government agencies and other stakeholders to more effectively target mediation efforts to reduce the potential for conflict arising in the future.

Publication Year: 2017

ISSN: 0143-6228

Source: Applied Geography 78: 33-44

DOI: 10.1016/j.apgeog.2016.10.005

  • Home
  • Mammalian biogeography and the Ebola virus in Africa

Mammalian biogeography and the Ebola virus in Africa

Posted by

FTA

Authors: Olivero, J.; Fa, J.E.; Real, R.; Farfán, M.A.; Márquez, A.L.; Vargas, J.M.; Paul Gonzales, J.; Cunningham, A.A.; Nasi, R.

  1. Ebola virus is responsible for the fatal Ebola virus disease (EVD).
  2. Identifying the distribution area of the Ebola virus is crucial for understanding the risk factors conditioning the emergence of new EVD cases. Existing distribution models have underrepresented the potential contribution that reservoir species and vulnerable species make in sustaining the presence of the virus.
  3. In this paper, we map favourable areas for Ebola virus in Africa according to environmental and zoogeographical descriptors, independent of human-to-human transmissions. We combine two different biogeographical approaches: analysis of mammalian distribution types (chorotypes), and distribution modelling of the Ebola virus.
  4. We first obtain a model defining the distribution of environmentally favourable areas for the presence of Ebola virus. Based on a review of mammal taxa affected by or suspected of exposure to the Ebola virus, we model favourable areas again, this time according to mammalian chorotypes. We then build a combined model in which both the environment and mammalian distributions explain the favourable areas for Ebola virus in the wild.
  5. We demonstrate that mammalian biogeography contributes to explaining the distribution of Ebola virus in Africa, although vegetation may also underscore clear limits to the presence of the virus. Our model suggests that the Ebola virus may be even more widespread than previously suspected, given that additional favourable areas are found throughout the coastal areas of West and Central Africa, stretching from Cameroon to Guinea, and extend further East into the East African Lakes region.
  6. Our findings show that the most favourable area for the Ebola virus is significantly associated with the presence of the virus in non-human mammals. Core areas are surrounded by regions of intermediate favourability, in which human infections of unknown source were found. The difference in association between humans and other mammals and the virus may offer further insights on how EVD can spread.

Back to top

Sign up to our monthly newsletter

Connect with us