Reduction of global warming potential vis-à-vis greenhouse gases through traditional agroforestry systems in Rajasthan, India

Download options
Download document
Tree-based systems in arid region of India are an integral part of livelihood and environment security. Traditionally, the maintenance of scattered trees on farm to reap several tangible and intangible benefits is a way of life. Presently, these systems are often known as low-hanging fruit and become a key weapon to fight climate change evil by offsetting greenhouse gas (GHG) emission through carbon sequestration. Therefore, to quantify the offsetting potential of GHG emission and area occupied by these tree-based systems in Rajasthan was undertaken. The study was carried out into two major aspects: estimation of agroforestry area using satellite remote sensing data, and to estimate the carbon sequestration potential of existing agroforestry by using dynamic CO2FIXv3.1 model for a simulation period of 30-years in five districts (20% sampling), namely, Bikaner, Dausa, Jhunjhunu, Pali and Sikar from Rajasthan, India. The estimated area under agroforestry in Rajasthan was 1.49 million ha. The findings revealed that the major tree species existing on farmer’s field were Prosopis cineraria, Tecomella undulata, Capparis decidua, Acacia tortilis, Prosopis juliflora, Azadirachta indica and Ziziphus mauritiana with an observed number of trees in selected districts varied from 1.40 to 14.90 ha−1(with average tree density of 9.71 ha−1). The total biomass (tree + Crop) varied from 2.22 to 19.19 Mg ha−1, whereas the total biomass carbon ranged from 1.00 to 8.64 Mg C ha−1. The soil organic carbon ranged from 4.51 to 16.50 Mg C ha−1. The average estimated carbon sequestration and mitigation potential of the agroforestry were 0.26 Mg C ha−1 year−1and 0.95 Mg CO2 eq ha−1 year−1 on farmers' field of Rajasthan. At the state level, the reduction of GHG emission potential of agroforestry was found to be 1.42 million tonnes annually, which helps to cut carbon footprint and achieve targets of Paris agreement.
Authors: Chavan, S.B.; Newaj, R.; Rizvi, R.H.; Prasad, R.; Alam, B.; Handa, A.K.; Dhyani, S.K.; Jain, A.; Tripathi, D.
Subjects: global warming, greenhouse gases, agroforestry systems, carbon sequestration, climate change
Publication type: ISI, Journal Article, Publication
Year: 2021
ISSN: 1387-585X

Back to top

Sign up to our monthly newsletter

Connect with us