• Home
  • Contrasting land use systems influence soil seed bank composition and density in a rural landscape mosaic in West Africa

Contrasting land use systems influence soil seed bank composition and density in a rural landscape mosaic in West Africa

Posted by

FTA COMMUNICATIONS TEAM

Soil seed banks (SSBs) play a key role in the post-disturbance recruitment of many plant species. Seed bank diversity can be influenced by spatial and environmental variability and disturbance heterogeneity across the landscape. Understanding the recovery potential of native vegetation from SSBs is important for restoration and biodiversity conservation. Yet, in savanna-woodland, little is known about how SSBs vary in their germination, composition and density under different land uses, and how SSBs relate to aboveground vegetation (AGV). Using a sampling design based on the Land Degradation Surveillance Framework, we assessed the SSB and AGV in twelve 0.25?ha plots among sixteen in four contrasting land use systems of savanna-woodland in Burkina Faso: bushland, cultivated farmland, fallow and wetland. A total of 720 soil samples were taken from four stratified depths of 0–5?cm, >5–10?cm, >10–15?cm, and >15–20?cm. The SSB composition and richness was determined by the seedling emergence technique. Results showed that the SSB in all land uses was largely dominated by annual grasses with few perennial herbaceous and woody species. Seed density was highest in the fallow soil and highest in the upper soil layers for all land uses. A non-metric multidimensional scaling ordination of the SSB and AGV indicated that the SSBs were a poor reflection of the AGV. Based on these findings, spatial variations in landscape characteristics not only influence seed distribution and viability but also have the potential to influence population persistence. These results imply that successful restoration of fragmented ecosystems requires the addition of seeds and seedlings of target species.

Access this article.

  • Home
  • Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa

Trait-based approaches for guiding the restoration of degraded agricultural landscapes in East Africa

Posted by

FTA COMMUNICATIONS TEAM

  1. Functional ecology provides a framework that can link vegetation characteristics of various land uses with ecosystem function. However, this application has been mostly limited to [semi-]natural systems and small spatial scales. Here, we apply functional ecology to five agricultural landscapes in Kenya, Uganda and Ethiopia, and ask to what extent vegetation characteristics contribute to soil functions that are key to farmers’ livelihoods.
  2. We used the Land Degradation Surveillance Framework (LDSF), a multi-scale assessment of land health. Each LDSF site is a 10 × 10 km landscape in which vegetation cover and erosion prevalence were measured, a tree inventory was carried out, and topsoil (0–20 cm) samples were collected for organic carbon (SOC) analysis in approximately 160 × 1,000 m2 plots. Land degradation is a recurring phenomenon across the five landscapes, indicated by high erosion prevalence (67%–99% of the plots were severely eroded). We used mixed models to assess if vegetation cover, above-ground woody biomass and the functional properties of woody vegetation (weighted-mean trait values, functional diversity [FD]) explain variation in SOC and erosion prevalence.
  3. We found that the vegetation cover and above-ground biomass had strong positive effects on soil health by increasing SOC and reducing soil erosion. After controlling for cover and biomass, we found additional marginal effects of functional properties where FD was positively associated with SOC and the abundance of invasive species was associated with higher soil erosion.
  4. Synthesis and applications. This work illustrates how functional ecology can provide much-needed evidence for designing strategies to restore degraded agricultural land and the ecosystem services on which farmers depend. We show that to ensure soil health, it is vital to avoid exposed soil, maintain or promote tree cover, while ensuring functional diversity of tree species, and to eradicate invasive species.

Back to top

Sign up to our monthly newsletter

Connect with us