Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Mapping conservation priorities for Asian tree species

Mapping conservation priorities for Asian tree species


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Decades of water erosion have sculpted this piece of Borneo ironwood, one of the world’s most durable timbers. Photo by R. Jalonen/Bioversity International

A new regional initiative is providing practitioners with tools for deciding where to focus conservation and restoration efforts.

The challenge: valuable tree species are under threat

Unsustainable extraction, along with changes in land uses and the climate, is threatening thousands of socioeconomically valuable tree species across Asia. These species urgently need conservation and restoration to help meet future needs for food, fuel and fiber in the world’s most populous region.

Yet, very little information is available about their historical and current distribution, patterns of genetic diversity, intensity of threats across their distribution ranges, or availability of seed sources to support restoration. Effective conservation strategies for these species and their genetic resources cannot be implemented without improving knowledge on the species’ distributions and the threats they are facing.

The solution: fill the knowledge gap

A new regional initiative is setting out to fill these gaps by producing up-to-date information on the distributions of valuable tree species and the threats to them, and guidance to develop conservation strategies that help maintain the genetic diversity and adaptive capacity of the species.

The Geographic Information for Conserving Native Tree Species and Their Genetic Resources in Asia-Pacific (APFORGIS) initiative is being coordinated by Bioversity International and implemented in collaboration with the Asia Pacific Forest Genetic Resources Programme (APFORGEN). The initiative contributes directly to APFORGEN’s new strategy for 2018-2022, which has named improving the availability and accessibility of species information as one of the network’s key objectives for the next five years.

50 pilot tree species

Tree species experts from across the region have identified 50 pilot species for APFORGIS, based on existing national priority species lists, socioeconomic importance and conservation status, and the diversity of species traits such as pollen and seed dispersal patterns, including:

  • Kokum (Clusiaceae: Garcinia indica), widely used for its edible fruits, seed oil and medicinal values, and an important source of income for rural communities, but rapidly declining in the wild.
  • Gamboge species which are dioecious (having separate male and female trees) – conservation guidelines need to consider sex ratios and larger than usual population sizes to avoid inbreeding.
  • Borneo Ironwood (Lauraceae: Eusideroxylon zwageri), as its name suggests, is one of the most durable and heaviest timber species in the world, used for centuries for building ships, docks and houses fit for humid tropical conditions. Ironwood grows very slowly and its seed are dispersed mainly by gravity in the vicinity of the mother trees, making the species vulnerable for genetic erosion. Many anecdotes about the iconic species’ decline exist, yet it does not have an accurate conservation status or specific conservation strategies in place.

Methods, tools and capacities developed for these and other species can be used by forest departments, research institutions and conservation organizations for other species of interest with similar characteristics.

Knowledge to inform conservation strategies

A woman samples Borneo Ironwood for genetic analysis in Sarawak, Malaysian Borneo. Photo by R. Jalonen/Bioversity International

“Current lack of knowledge about these and other pilot species illustrates the conservation challenges in the vast and extremely diverse Asian region,” says Riina Jalonen, who is coordinating the initiative.

“Thirty-seven percent of the pilot species have never been assessed for their conservation status despite of their socioeconomic importance, and another 31 percent were last assessed in the 1990s. Of the species assessed in the past 10 years, three-quarters are threatened.”

APFORGIS uses existing information about the species occurrences and threats to them to develop species distribution models. The models give an estimate of historical, current and potential future distributions. The resulting maps will be validated by experts and used for identifying conservation priorities. They can also be used to design and target field studies in the future.

Regional species distribution and threat maps developed by APFORGIS will help to:

  • Identify centers of species diversity to optimize conservation efforts
  • Assess how well the current protected areas cover the priority areas for conservation
  • Identify areas where species populations may be most threatened by climate change
  • Identify seed transfer zones and adequacy of existing seed sources for tree planting and forest restoration
  • Plan studies on genetic diversity and provenance trials that are representative of the species’ range and the variation in environmental conditions

What’s next?

Based on up-to-date information about the species distributions and threats to them, the project will then develop guidelines for conservation units that maintain genetic diversity vital for the species survival, productivity and adaptive capacity. The units can also serve as sources of diverse and suitably adapted planting material, urgently needed for improving the success of forest restoration efforts.

Regional collaboration will allow countries share information and responsibilities in establishing and managing genetic conservation units. Fewer units are likely needed than if every country set up its own network, which helps to focus and sustain efforts over time.

The pilot species comprise:

  • Afzelia xylocarpa 
  • Ailanthus excelsa 
  • Albizia lebbeck 
  • Anisoptera costata 
  • Aquilaria crassna 
  • Aquilaria malaccensis 
  • Azadirachta indica 
  • Cinnamomum parthenoxylon 
  • Dalbergia cochinchinensis 
  • Dalbergia cultrata 
  • Dalbergia latifolia 
  • Dalbergia oliveri 
  • Dalbergia sissoo 
  • Dalbergia tonkinensis 
  • Diospyros cauliflora 
  • Dipterocarpus alatus 
  • Dipterocarpus grandiflorus 
  • Dipterocarpus turbinatus 
  • Dryobalanops aromatica 
  • Dyera costulata
  • Eurycoma longifolia 
  • Eusideroxylon zwageri 
  • Fagraea fragrans 
  • Garcinia indica 
  • Gluta usitata 
  • Gonystylus bancanus 
  • Hopea odorata 
  • Intsia bijuga 
  • Intsia palembanica 
  • Koompassia malaccensis 
  • Myristica malabarica 
  • Neolamarckia cadamba 
  • Parkia speciosa 
  • Pericopsis mooniana 
  • Phyllanthus emblica 
  • Pinus kesiya  
  • Pinus merkusii 
  • Podocarpus neriifolius 
  • Pometia pinnata 
  • Pongamia pinnata
  • Pterocarpus indicus 
  • Pterocarpus macrocarpus 
  • Santalum album 
  • Scaphium macropodum  
  • Shorea leprosula 
  • Shorea macrophylla 
  • Shorea ovalis 
  • Shorea parvifolia 
  • Shorea pinanga 
  • Shorea roxburghii 
  • Sindora siamensis 
  • Tectona grandis 
  • Terminalia chebula 
  • Vatica mangachapoi 
  • Xylia xylocarpa

To achieve conservation for the valuable tree species and their genetic diversity across Asia, the initiative needs help to gather information on the species’ known distributions, whether current or historical.

If you or your organization have data about the natural occurrences of the pilot species of APFORGIS, please contact Riina Jalonen r.jalonen@cgiar.org to find out how you can help.


Originally published on the website of Bioversity International

Geographic Information for Conserving Native Tree Species and Their Genetic Resources in Asia-Pacific (APFORGIS) is a regional project implemented in Asian countries from December 2017 to November 2019. The project is coordinated by Bioversity International and implemented in collaboration with the Asia Pacific Forest Genetic Resources Programme (APFORGEN). The project is funded by the German Government through the Federal Ministry of Food and Agriculture. This research is part of the CGIAR Research Program on Forests, Trees and Agroforestry and is supported by CGIAR Fund Donors.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Bridging molecular genetics and participatory research: how access and benefit-sharing stimulate interdisciplinary research for tropical biology and conservation

Bridging molecular genetics and participatory research: how access and benefit-sharing stimulate interdisciplinary research for tropical biology and conservation


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Molecular genetics research can benefit efforts to conserve the genetic diversity of tropical plant species. Clear and efficient procedures are needed to access DNA samples, while respecting tropical countries’ and local communities’ rights on genetic resource usage. The Nagoya Protocol on Access and Benefit-Sharing, which took effect in 2014, provides an opportunity to establish such procedures. However, scientists are concerned that its emphasis on monetary gains restricts research focused on scientific, societal, and environmental benefits. Despite much political and scientific debate, few concrete cases have demonstrated the practical functioning of the Nagoya Protocol. This paper describes the first application of the Protocol in Guatemala, where it was used to grant permission to a non-commercial study on gene flow in mahogany (Swietenia macrophylla King) populations in the Maya Biosphere Reserve of Petén. On the basis of this study, we discuss five strategies to enhance the application of molecular genetics to conservation biology under the Nagoya Protocol: (1) generate short and standardized procedures; (2) enable science communication; (3) cultivate a common understanding between users, providers, and potential beneficiaries; (4) involve local research and practitioner organizations; and (5) integrate participatory research. Positive societal views on the application of molecular genetics to conservation biology generate further support for work in this discipline and promote adoption of research results for the conservation of genetic diversity of tropical plant species.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Nutrition and trees in sub-Saharan Africa: Jennifer’s secret

Nutrition and trees in sub-Saharan Africa: Jennifer’s secret


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM




Not even Jennifer’s children know where she hides the chikanda. Why? The small, brownish orchid tubers are highly valued as a cultural delicacy among the Bemba people who live in the Luwingu district of northern Zambia. Overharvesting of chikanda for sale is an important issue in East and southern Africa, but local women have a way to harvest it sustainably. Jennifer explains why chikanda is so important in her culture.

Between 2013 and 2017, the Center for International Forestry Research (CIFOR) conducted a research project called ‘Nutrition and Trees in sub-Saharan Africa’ in five sites across several countries, looking at the contribution that forests and trees in landscapes make to the diets of mothers and their young children. One of these sites was in Luwingu, in northern Zambia. At the end of the project, women from different villages came together to showcase their recipes of traditional foods in a food fair hosted by Zambia’s Ministry of Agriculture and CIFOR.

This video was produced by CIFOR.

This project was funded with UK aid from the UK government. This research is part of the CGIAR Research Program on Forests, Trees and Agroforestry (FTA), which is supported by CGIAR Fund Donors.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Trees on farms: Unexplored big wins for climate change through landscape restoration

Trees on farms: Unexplored big wins for climate change through landscape restoration


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Seeing the trees as well as the forest: the importance of managing forest genetic resources

Seeing the trees as well as the forest: the importance of managing forest genetic resources


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

bioversity

Reliable data on the status and trends of forest genetic resources are essential for their sustainable management. The reviews presented in this special edition of Forest Ecology and Management on forest genetic resources complement the first ever synthesis of the State of the World’s Forest Genetic Resources (SOW-FGR) that has just been published by the Food and Agriculture Organization. In this editorial, we present some of the key findings of the SOW-FGR and introduce the seven reviews presented in this special edition on: (1) tree genetic resources and livelihoods; (2) the benefits and dangers of international germplasm transfers; (3) genetic indicators for monitoring threats to populations and the effectiveness of ameliorative actions; (4) the genetic impacts of timber management practices; (5) genetic considerations in forest ecosystem restoration projects using native trees; (6) genetic-level responses to climate change; and (7) ex situ conservation approaches and their integration with in situ methods. Recommendations for action arising from the SOW-FGR, which are captured in the first Global Plan of Action for the Conservation, Sustainable Use and Development of Forest Genetic Resources, and the above articles are discussed. These include: increasing the awareness of the importance of and threats to forest genetic resources and the mainstreaming of genetic considerations into forest management and restoration; establishing common garden provenance trials to support restoration and climate change initiatives that extend to currently little-researched tree species; streamlining processes for germplasm exchange internationally for research and development; and the intelligent use of modern molecular marker methods as genetic indicators in management and for improvement purposes.

Category: Journal articles

Author: Loo, J.; Souvannavong, O.; Dawson, I.K.

Journal or series: Forest Ecology and Management, Vol. 333

Pages: p. 1-8

Publisher: Elsevier

Publication Year: 2014

Publication Format: PDF

ISSN: 0378-1127

Language: EN


Back to top

Sign up to our monthly newsletter

Connect with us