Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Large genetic diversity for fine-flavor traits unveiled in cacao (Theobroma cacao L.) with special attention to the native Chuncho variety in Cusco, Peru

Large genetic diversity for fine-flavor traits unveiled in cacao (Theobroma cacao L.) with special attention to the native Chuncho variety in Cusco, Peru


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

The fine-flavor cocoa industry explores mainly six chocolate sensory traits from four traditional cocoa (Theobroma cacao L.) varieties. The importance of cocoa pulp flavors and aromas has been ignored until we recently showed that they migrate into beans and into chocolates. Pulp sensory traits are strongly genotype dependent and correlated to human preference. Growers of the native Chuncho variety from Cusco, Peru, which is the cocoa that the Incas consumed, make pulp juices from preferred trees (genotypes). Evaluations of 226 preferred trees evidenced presence of 64 unique mostly multi-trait sensory profiles. Twenty nine of the 40 flavors and aromas identified mimic those of known fruit and flower or spice species such as mandarin, soursop, custard apple, cranberry, peach, banana, inga, mango, nut, mint, cinnamon, jasmine, rose and lily. Such large sensory diversity and mimicry is unknown in other commercial fleshy fruit species. So far, 14 Chuncho-like pulp sensory traits have been identified among different cocoa varieties elsewhere suggesting that Chuncho is part of the ¿centre of origin¿ for cocoa flavors and aromas. Stable expression of multi-trait Chuncho sensory profiles suggest pleiotropic dominant inheritance, favoring selection for quality traits, which is contrasting with the complex sensory trait determination in other fleshy fruit species. It is inferred that the large sensory diversity of Chuncho cocoa can only be explained by highly specialized sensory trait selection pressure exerted by frugivores, during evolution, and by the indigenous ¿Matsigenkas¿, during domestication. Chuncho beans, still largely employed as a bulk cocoa source, deserve to become fully processed as an extra-fine cocoa variety. The valorization of the numerous T. cacao sensory profiles in chocolates, raw beans and juices should substantially diversify and boost the fineflavor cocoa industry, this time based on the Matsigenka/Inca and not anymore on the Maya cocoa traditions.

Access this publication.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Forecasting cocoa yields for 2050

Forecasting cocoa yields for 2050


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Cocoa is a food-industrial crop that can have an important role in poverty reduction for small producers in developing countries of Africa, Latin America, Asia and Oceania. The cocoa chocolate value chain moves every year millions of dollars that represent important dividends for producing countries and for national and international companies around the world. The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) is a structural simulation model which allows for future analysis of cocoa market globally. The model has been developed at International Food Policy Research Institute (IFPRI) to consider the long term challenges facing policymakers in reducing hunger, and poverty in a sustainable fashion. IMPACT is the main quantitative tool used by the Global Futures & Strategic Foresight (GFSF) initiative, in which Bioversity International is involved as a partner. The aim of this report is to validate the performance and improve parameterization of IMPACT cocoa components. It focuses on ten largest cocoa producing countries in reviewing parameters related to yield growth rates. Based on historical cocoa yield time series forecasts are made using Autoregressive Integrated Moving Average (ARIMA). The forecast together with statistically estimated prediction intervals, supported by literature sources and expert knowledge are compared against respective yield trajectories embedded in IMPACT in order to make recommendations.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Achieving sustainable cultivation of cocoa

Achieving sustainable cultivation of cocoa


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
resource_title
Posted by

FTA COMMUNICATIONS TEAM

There is a growing demand for cocoa. However, cultivation is dependent on ageing trees with low yields and increasing vulnerability to disease. There is growing concern about the environmental impact of cultivation in areas soil health and biodiversity. There is therefore an urgent need to make cocoa cultivation more efficient and sustainable to ensure a successful future. These challenges are addressed in Achieving sustainable cultivation of cocoa.

Part 1 reviews genetic resources and developments in breeding. Part 2 discusses optimising cultivation techniques to make the most of new varieties. Part 3 summaries the latest research on understanding and combatting the major fungal and viral diseases affecting cocoa. Part 4 covers safety and quality issues whilst the final part of the book looks at ways of improving sustainability, including the role of agroforestry, organic cultivation and ways of supporting smallholders. With its distinguished editor and international range of expert authors – including a number from CGIAR Research Program on Forests, Trees and Agroforestry (FTA) scientists – this collection will be a standard reference for cocoa scientists, growers and processors.

Part 1 Genetic resources and breeding

1. Taxonomy and classification of cacao: Ranjana Bhattacharjee, International Institute of Tropical Agriculture (IITA), Nigeria; and Malachy Akoroda, Cocoa Research Institute of Nigeria, Nigeria;
2. Conserving and exploiting cocoa genetic resources: the key challenges: Brigitte Laliberté, Bioversity International, Italy; Michelle End, INGENIC (The International Group for Genetic Improvement of Cocoa), UK; Nicholas Cryer, Mondelez International, UK; Andrew Daymond, University of Reading, UK; Jan Engels, Bioversity International, Italy; Albertus Bernardus Eskes, formerly CIRAD and Bioversity International, France; Martin Gilmour, Barry Callebaut, USA; Philippe Lachenaud, Centre de coopération internationale en recherche agronomique pour le développement, France; Wilbert Phillips-Mora, Center for Tropical Agriculture Research and Education, Costa Rica; Chris Turnbull, Cocoa Research Association Ltd., UK; Pathmanathan Umaharan, Cocoa Research Centre, The University of the West Indies, Trinidad and Tobago; Dapeng Zhang, USDA-ARS, USA; and Stephan Weise, Bioversity International, Italy;
3. The role of gene banks in preserving the genetic diversity of cacao: Lambert A. Motilal, The University of the West Indies, Trinidad and Tobago;
4. Safe handling and movement of cocoa germplasm for breeding: Andrew Daymond, University of Reading, UK;
5. Developments in cacao breeding programmes in Africa and the Americas: Dário Ahnert, Universidade Estadual de Santa Cruz, Brazil; and Albertus Bernardus Eskes, formerly CIRAD and Bioversity International, France;

Part 2 Cultivation techniques

6. Cocoa plant propagation techniques to supply farmers with improved planting materials: Michelle End, INGENIC (The International Group for Genetic Improvement of Cocoa), UK; Brigitte Laliberté, Bioversity International, Italy; Rob Lockwood, Consultant, UK; Augusto Roberto Sena Gomes, Consultant, Brazil; George Andrade Sodré, CEPLAC/CEPEC, Brazil; and Mark Guiltinan and Siela Maximova, The Pennsylvania State University, USA;
7. The potential of somatic embryogenesis for commercial-scale propagation of elite cacao varieties: Siela N. Maximova and Mark J. Guiltinan, The Pennsylvania State University, USA;
8. Good agronomic practices in cocoa cultivation: rehabilitating cocoa farms: Richard Asare, International Institute of Tropical Agriculture (IITA), Ghana; Victor Afari-Sefa, World Vegetable Center, Benin; Sander Muilerman, Wageningen University, The Netherlands; and Gilbert J. Anim-Kwapong, Cocoa Research Institute of Ghana, Ghana;
9. Improving soil and nutrient management for cacao cultivation: Didier Snoeck and Bernard Dubos, CIRAD, UR Systèmes de pérennes, France;

Part 3 Diseases and pests

10. Cocoa diseases: witches’ broom: Jorge Teodoro De Souza, Federal University of Lavras, Brazil; Fernando Pereira Monteiro, Federal University of Lavras and UNIVAG Centro Universitário, Brazil; Maria Alves Ferreira, Federal University of Lavras, Brazil; and Karina Peres Gramacho and Edna Dora Martins Newman Luz, Comissão Executiva do Plano da Lavoura Cacaueira (CEPLAC), Brazil;
11. Frosty pod rot, caused by Moniliophthora roreri: Ulrike Krauss, Palm Integrated Services and Solutions (PISS) Ltd., Saint Lucia;
12. Cocoa diseases: vascular-streak dieback: David I. Guest, University of Sydney, Australia; and Philip J. Keane, LaTrobe University, Australia;
13. Insect pests affecting cacao: Leïla Bagny Beilhe, Régis Babin and Martijn ten Hoopen, CIRAD, France;
14. Nematode pests of cocoa: Samuel Orisajo, Cocoa Research Institute of Nigeria, Nigeria;
15. Advances in pest- and disease-resistant cocoa varieties: Christian Cilas and Olivier Sounigo, CIRAD, France; Bruno Efombagn and Salomon Nyassé, Institute of Agricultural Research for Development (IRAD), Cameroon; Mathias Tahi, CNRA, Côte d’Ivoire; and Sarah M. Bharath, Meridian Cacao, USA;

Part 4 Safety and sensory quality

16. Improving best practice with regard to pesticide use in cocoa: M. A. Rutherford, J. Crozier and J. Flood, CABI, UK; and S. Sastroutomo, CABI-SEA, Malaysia
17. Mycotoxins in cocoa: causes, detection and control: Mary A. Egbuta, Southern Cross University, Australia;
18. Analysing sensory and processing quality of cocoa: Darin A. Sukha and Naailah A. Ali, The University of the West Indies, Trinidad and Tobago;

Part 5 Sustainability

19. Climate change and cocoa cultivation: Christian Bunn, Fabio Castro and Mark Lundy, International Center for Tropical Agriculture (CIAT), Colombia; and Peter Läderach, International Center for Tropical Agriculture (CIAT), Vietnam;
20. Analysis and design of the shade canopy of cocoa-based agroforestry systems:Eduardo Somarriba, CATIE, Costa Rica; Luis Orozco-Aguilar, University of Melbourne, Australia; Rolando Cerda, CATIE, Costa Rica; and Arlene López-Sampson, James Cook University, Australia;
21. Organic cocoa cultivation: Amanda Berlan, De Montfort University, UK;
22. Cocoa sustainability initiatives: the impacts of cocoa sustainability initiatives in West Africa: Verina Ingram, Yuca Waarts and Fedes van Rijn, Wageningen University, The Netherlands;
23. Supporting smallholders in achieving more sustainable cocoa cultivation: the case of West Africa: Paul Macek, World Cocoa Foundation, USA; Upoma Husain and Krystal Werner, Georgetown University, USA.

This book is available for order from the publisher, Burleigh Dodds Science Publishing.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Optimizing carbon stocks of cocoa landscapes can help conserve Africa’s forests

Optimizing carbon stocks of cocoa landscapes can help conserve Africa’s forests


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

A woman holds a cacao bean, which can be processed into butter and cream. Photo by O. Girard/CIFOR

Cocoa is the primary source of income in southern Cameroon, where it represents 48% of total agricultural land use. In this and other tropical regions, the way cocoa agroforests are managed matters immensely to livelihoods, and also to the climate.

Cocoa agroforests vary widely in terms of tree composition and structure, but, until recently, few studies had been conducted to understand how these differences impact carbon stocks.

Meanwhile, irresponsible land management practices were not only seeing cocoa plantations fail to contribute to countries’ emissions reductions goals, but also cause massive forest degradation in countries such as the Côte D’Ivoire and Ghana, which are alone responsible for two-thirds of the world’s cocoa production.

This ‘cocoa belt’ had been becoming increasingly prone to deforestation and drought, and cocoa landscapes in other high-producing countries in Asia and Latin America had been following suit.

But when chocolate companies began making deforestation-related commitments at the UNFCCC COP21 in Paris, the tide began to change on the industry’s standards and practices. It also then became imperative for scientists to generate knowledge to help the expected changes transform cocoa forest landscapes in the most beneficial ways.

In response, CGIAR Research Program on Forests, Trees and Agroforestry (FTA) institution the Center for International Forestry Research (CIFOR) and other partner organizations profiled the carbon stocks of cocoa agroforests in three southern Cameroonian ecological areas (Yaoundé, Mbalmayo and Ebolowa) and identified what types of plants and management systems boost carbon storage best.

“This knowledge is important to implement nationally determined contributions [NDCs] to the global climate agenda and its measures to reduce emissions from deforestation and forest degradation [REDD+] by promoting sustainable cocoa value chains,” says lead author and CIFOR senior scientist Denis Sonwa.

Since COP21, the world’s largest chocolate companies – Mars, Nestle and Ferrero to name a few – have come together in a variety of agreements, from an agreement signed by the Prince of Wales to a sectorial “Frameworks for Action” at COP23 in Bonn, Germany. The goal is to see the industry achieve net-zero deforestation and improve local livelihoods, and this research is a crucial step along the way.

Read also: Baseline for assessing the impact of fairtrade certification on cocoa farmers and cooperatives in Côte d’Ivoire

COCOA’S COMRADES

The researchers aimed to answer a string of questions including how carbon stocks of cocoa agroforests varied across ecological zones and management methods, and how carbon storage compared between different types of plants associated with cocoa – and the stocks of some key species, in particular.

“What we found is that agroforests with a high density of high-economic value industrial timber and non-timber forest products stored two to three times the amount captured by other management systems,” explains Sonwa.

A dish of cacao beans awaits processing in Cameroon. Photo by O. Girard/CIFOR

Plantations with a high density of banana plants and oil palm trees came next, and those with cocoa tree densities of 70% or higher came in last. Specifically, the above-ground parts of plants in these varied types of cocoa agroforests stored 147 Mg of carbon per hectare, 49 Mg and 39 Mg, respectively.

Researchers also found that above-ground parts of the other plants accounted for 70% of the carbon storage, while cocoa trees accounted for only 5%.

Across all three ecological zones, high-value timber accounts for 29.7% of the total carbon stored above ground, at 49.9 Mg per hectare; edible species for 15%; and medicinal plants for 6%.

Read also: Unpacking ‘sustainable’ cocoa: do sustainability standards, development projects and policies address producer concerns in Indonesia, Cameroon and Peru?

RICH PICKINGS

Another conclusion of the study is that “the top ten species generally stored more than 50% of carbon held by associated plants,” with Terminalia superba – a tall deciduous tree native to the African tropics – among the species with a higher storage (14 Mg per hectare).

These results “suggest that associated plants not only contribute to shade, but also increase the capacity of farms to store carbon,” notes the study. And the benefits of such plants go well beyond that. Indeed, the higher ecocapacity of cocoa agroforests lead to increases in plant litter fall, soil litter and rainfall, thus upgrading both the agronomic and environmental potential of the landscape. Meanwhile, a plantation solely growing cocoa does threaten overall agro-ecological sustainability.

Sonwa points out that non-cocoa plants provide a structure similar to that of forests, and that their products and services appear as cobenefits of cocoa agroforestry in addition to carbon storage. Timber, non-wood forest products such as fruit, and medicinal plants may all contribute to local livelihoods and to biodiversity conservation.

“Simultaneously obtaining several products and services from the same plantation increases the resilience of farmers,” he says. “That is particularly important as the pressure on natural resources increases.”

Read also: Greater inclusion of women is needed to optimally intensify cocoa value chains, researchers find

BEYOND THE BEANS

In the last few decades, the main goal of cocoa agroforests was to produce cocoa beans, but demographic growth, climate change and loss of forests are changing this approach.

For the researchers, the multiple functions of cocoa agroforests should be at the center of efforts to fight global warming and achieve better outcomes for people and the planet. “This is why our findings are useful to scientists, and also to decision-makers, farmers and the private sector,” says Sonwa.

The findings of the paper can, for example, be useful to certification schemes that want to improve the environmental footprint of the cocoa sector. They also offer key insights to cocoa agroforest managers, particularly given the current context where zero deforestation targets are at the center of many company agendas.

In Sub-Saharan Africa where most of the world’s cocoa originates, the paper is certainly useful in structuring efforts to free the cocoa value chain from deforestation. But going beyond that, in central Africa and the Congo Basin, it sheds light by offering productive agroforestry options that conserve remaining natural forests while providing livelihoods.

“We have examined cocoa agroforests from an ecological perspective, so the next step would be to look at economic and production aspects,” says Sonwa. “For example, does storing more carbon in associated plants affect cocoa production — and how?”

The findings make clear that sustainable cocoa agroforest management in Sub-Saharan African forest landscapes can reconcile cocoa bean production with climate change responses, and big global initiatives, such as the Sustainable Development Goals (SDGs).

But, it also makes clear how much there is left to learn about chocolate.

By Gloria Pallares, originally published at CIFOR’s Forests News.

For more information on this topic, please contact Denis Sonwa at d.sonwa@cgiar.org.


This research forms part of the CGIAR Research Program on Forests, Trees and Agroforestry, which is supported by CGIAR Fund Donors.

This research was supported by the International Institute of Tropical Agriculture, Sustainable Tree Crops Program (STCP) and Deutscher Akademischer Austauschdienst (DAAD).


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Baseline for assessing the impact of fairtrade certification on cocoa farmers and cooperatives in Côte d’Ivoire

Baseline for assessing the impact of fairtrade certification on cocoa farmers and cooperatives in Côte d’Ivoire


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

In 2014, Fairtrade International, Fairtrade Africa, the World Agroforestry Centre (ICRAF) and Bioversity International initiated a collaboration for the development of a multidimensional baseline on small-scale cocoa farmers and their cooperatives in West Africa. The baseline is expected to provide a fuller understanding of the current situation for Fairtrade cocoa production and marketing as well as provide the foundation for rigorous assessment of outcomes and impacts of Fairtrade certification on cocoa cooperatives and smallholder households in West Africa in the future. Côte d’Ivoire and Ghana, the two largest Fairtrade cocoa producers in West Africa, provide about 68 percent of the cocoa that is sold under Fairtrade terms in global markets.

In 2013, the year this study was commissioned, the volume of Fairtrade cocoa sold from West Africa reached 133 400 tonnes, involving 71 cooperatives and producer associations and 138 800 farmers. Most of this cocoa originated from Côte d’Ivoire and Ghana. The rapid growth in the number of cocoa-producing organizations joining the Fairtrade system in Côte d’Ivoire and Ghana provides a unique opportunity to build a baseline on Fairtrade cocoa producers in West Africa for future monitoring and impact assessment. This report focuses on the Fairtrade cocoa baseline for Côte d’Ivoire (a similar report is available for Ghana). It describes the conceptual framework and methods used in the design of the baseline, followed by an assessment of the context in Côte d’Ivoire. Key features of the baseline data at the cooperative and household levels are covered in detail. The report concludes with some recommendations to Fairtrade for expanding Fairtrade International in Côte d’Ivoire and for follow-up actions for future baseline work.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Unpacking 'sustainable' cocoa: do sustainability standards, development projects and policies address producer concerns in Indonesia, Cameroon and Peru?

Unpacking ‘sustainable’ cocoa: do sustainability standards, development projects and policies address producer concerns in Indonesia, Cameroon and Peru?


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Sustainable cocoa has attracted considerable attention. However, stakeholders in cocoa development may differ in their understanding of sustainable cocoa, their interests and actions taken in advancing sustainable cocoa. This article analyses cocoa sustainability at nested scales and analyses to what extent sustainability standards, policies and development projects address sustainability concerns and contribute to ecosystem services. The analysis is based on literature reviews and key informant interviews in Sulawesi (Indonesia), Ucayali (Peru) and Centre Region (Cameroon). Producers in all three countries shared concerns of price volatility, weak farmer organizations and dependence on few buyers. Producers in Sulawesi and Centre Region compensated low returns to cocoa production by diversification of cocoa systems. Public and private development actors were concerned with low production volumes. Research has so far focused on biodiversity loss, which differed depending on the cocoa sector’s age in a country. Policies and development programs in all countries have focused on cocoa sector expansion and productivity increases, irrespective of smallholder needs for economically viable farming systems and existing market structures resulting in little bargaining power to farmers. Sustainability standards have spread unevenly and have converged in compliance criteria over time, although initially differing in focus. Recently added business and development criteria of sustainability standards can potentially address farmers’ concerns. Competing interests and interdependencies between different actors’ responses to concerns have so far not been openly acknowledged by public and private sector actors.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Review of the CFC/ICCO/Bioversity project on cacao germplasm evaluation (1998-2010)

Review of the CFC/ICCO/Bioversity project on cacao germplasm evaluation (1998-2010)


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

The CFC/ICCO/Bioversity project was in response to an urgent need to revitalize cacao breeding and research globally for increasing resistance to pests and disease. It aimed to strengthen national cacao improvement programmes and increase international collaboration by carrying out joint evaluation, selection and breeding activities in ten cocoa-producing countries. The project implemented in two phases – Phase I (1998- 2004) and Phase II (2004-2010), has been one of the most ambitious collaborative efforts in cacao breeding. With an understanding that a similar global collaboration is needed to tackle the impacts of climate change on cacao production, this review was developed in response to a request from the cocoa industry and research partners to evaluate the effectiveness of the project, identify key lessons learned for the implementation of new multisite evaluation field trials focused on increasing the resilience of cacao to the effects of climate change. The cacao research community will be able to use these lessons learned to be better prepared for, and more effective in, the execution of future collaborative research initiatives.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Celebrating and rewarding excellence in producing high-quality cocoa: The 2017 International Cocoa Award winners

Celebrating and rewarding excellence in producing high-quality cocoa: The 2017 International Cocoa Award winners


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Cacao pods lie on the ground after harvesting. Photo by J. Raneri/Bioversity International
Posted by

FTA COMMUNICATIONS TEAM

Cacao pods lie on the ground after harvesting. Photo by J. Raneri/Bioversity International

As the only event in the world celebrating the work of producers and the richness of expression of cocoa, a unique cocoa initiative is helping to further mutual awareness and reinforce collaborations between producers and chocolate makers.

Every two years, the Cocoa of Excellence Programme spearheaded by Bioversity International and Event International recognizes the quality, flavor and diversity of cocoas according to their origin, with the participation of countries that can directly present the fruits of their labors to chocolate makers and the press.

The Cocoa of Excellence Programme is the entry point for the International Cocoa Awards (ICA). It aims to increase awareness and promote education along the cocoa supply chain on the opportunity to produce high quality cocoa and preserve flavors resulting from genetic diversity, terroir and know-how of the farmers who prepare cocoa.

Cacao diversity is also vital for production, as it provides not only different flavors, but also resistance to pests and disease outbreaks, and resilience in changing climatic conditions. Providing opportunities and incentives for safeguarding diversity to farmers and national organizations ensures that a portfolio of options remain available for future needs.

Celebrating the shortlisted entrants at the 2017 International Cocoa Awards at the Salon du Chocolat. Photo by Bioversity International

Following the selection and evaluation of 166 cocoa samples submitted from 40 countries, the wait was finally over on Oct. 30, 2017, for the 50 entrants shortlisted for the 2017 Edition of the ICA. The 18 ICA winners were celebrated at the Salon du Chocolat in Paris, shining an international spotlight on the work of cocoa farmers and cocoa diversity around the world.

“It is the highest reward for the Salon du Chocolat to be with Bioversity International at the origin of this unique program that gathered so many great and indisputable international experts in the world of cacao. Our initial wish was to create a direct link between chocolate makers and producers for reciprocal enrichment, in the qualitative aspects of chocolate and cocoa with all the benefits they entail,” said Francois Jeantet, Creator of the Salon du Chocolat.

“Today our wishes are fulfilled. A big thank you to all the team and all those that participate with passion,” he added.

“The program facilitates communication and linkages between the producers of this wonderful crop that is cocoa that delights the bean buyers and chocolate makers. This communication needs to be standardized so that all the actors along the value chain understand each other, from the farmers to the chocolate makers,” explained Brigitte Laliberté, Expert on Cacao Genetic Resources at Bioversity International.

“We are coordinating an effort on the development of international standards for the assessment of cocoa quality and flavor, for which we convened a consultation at the Salon just this morning,” Laliberté continued. “The meeting led to some very exciting group decisions and innovations in this important area.”

The Cocoa of Excellence Programme is the entry point for the International Cocoa Awards.

After a physical quality evaluation, the beans were carefully processed into liquor and untempered chocolate for blind sensory evaluation by a panel of international experts who are part of the Cocoa of Excellence Technical Committee.

Following the evaluation, the best 50 samples were selected and processed into tempered and molded chocolate (following the same recipe of 66 percent cocoa) for sensory evaluation by a broader panel of 41 chocolate professionals.

“Never before has there been such an assemblage of superb cocoas as we have had expressed as chocolates in these 2017 Edition of Cocoa of Excellence. The flavor evaluation has been both daunting as well as exhilarating. There is more outstanding flavor and diversity from more countries than ever before. The Technical Committee and the additional jury have performed superbly,” said Ed Seguine, Cacao Cocoa and Chocolate Advisors/Guittard Chocolate.

“We continue to believe that the Cocoa of Excellence as well as the International Cocoa Awards will shine the spotlight of flavors, craftsmanship and diversity on these farmers and bring real, meaningful value to them for their beans,” he added.

The 18 International Cocoa Awards for 2017 are:

Africa & the Indian Ocean

  • Ghana Simon Marfo – associated with Cocoa Abrabopa Association
  • Madagascar Mava Sa – Ferme D’ottange
  • Sierra Leone Sahr Bangura – associated with Kasiyatama
  • Tanzania Kokoa Kamili Limited

Asia, Pacific & Australia

  • Australia Australian Chocolate Pty Ltd
  • Hawaii Jeanne Bennett and Bruce Clements – Nine Fine Mynahs Estates
  • Hawaii University of Hawaii
  • India Regal plantations
  • Malaysia Teo Chun Hoon

Central America & Caribbean

  • Dominica Stewart Paris – Paris Family – associated with North East Cocoa Growers Cooperative
  • El Salvador José Eduardo Zacapa Campos
  • Guatemala Asociación Waxaquib Tzikin
  • Guatemala Mariel Ponce – Kacaou
  • Martinique Kora Bernabe and Elizabeth Pierre-Louis – associated with Valcaco – Association des Producteurs de Cacao de Martinique

South America

  • Bolivia Chocoleco
  • Brazil Emir De Macedo Gomes Filho
  • Ecuador Asociacion Quiroga
  • Peru Cooperativa Agraria APPROCAP Ltda.

Adapted from the press release originally published by Bioversity International. For more information, contact Ines Drouault at the Cocoa of Excellence Programme: i.drouault(at)cgiar.org.


The Cocoa of Excellence (CoEx) Programme is the entry point for cocoa-producers to participate in the International Cocoa Awards (ICA). The programme is coordinated by Bioversity International, and jointly organized with Event International in partnership with the CGIAR Research Program on Forests, Trees and Agroforestry (FTA), Guittard Chocolate, Seguine Cacao, Cocoa and Chocolate, Barry Callebaut, Puratos and the International Cocoa Organization (ICCO) with sponsorship from the European Cocoa Association (ECA), the Association of Chocolate, Biscuit and Confectionery Industries of Europe (Caobisco), the Federation of Cocoa Commerce (FCC), Nestlé, the Lutheran World Relief (LWR), Mars UK, Valrhona and with in-kind contributions from the Cocoa Research Centre of the University of the West Indies (CRC/UWI), Valrhona, Weiss Chocolate and CocoaTown.

This work contributes to the CGIAR Research Program on Forests for Trees and Agroforestry, supported by CGIAR Fund Donors.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • A review of research on the effects of drought and temperature stress and increased CO2 on Theobroma cacao L., and the role of genetic diversity to address climate change

A review of research on the effects of drought and temperature stress and increased CO2 on Theobroma cacao L., and the role of genetic diversity to address climate change


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

The global status of research on the effects of drought, temperature and elevated carbon dioxide (CO2) levels on the cacao plant, and the role of genetic diversity in producing more resilient cacao, are presented in this report. With the aim to enhance what we know about the resilience of cacao to climate change, and generate a comprehensive understanding of the questions that remain, this report highlights significant advances in published and ongoing research on drought and temperature tolerance in cacao.

Most of the information about ongoing or unpublished work was obtained from personal communications and surveys involving research institutes around the globe. Organizations were selected to participate in the survey based on their presence in the relevant literature, referrals from other organizations, or personal communications from individuals attesting to their involvement in research related to drought and temperature tolerance, or increased CO2 response, in cacao. A vast network of public and private sector partners including research institutes, producer organizations, and industry representatives around the world participated and were involved to collect additional information on unpublished and on-going research work in this area.

Over 100 scientists from 50 institutes across 29 countries participated. Additional information was gathered from personal communications, surveys carried out in collaboration with WCF and its USAID-supported Feed the Future Partnership for the Climate-Smart Cocoa Program, the Global Network for Cacao Genetic Resources (CacaoNet), the International Network for Cacao Genetic Improvement (INGENIC), the Regional Breeders Working Groups, and the research team on cacao and climate change at the University of Reading, UK. Fundamentally, the literature compiled in this report serves as a basis to understand the questions that still remain regarding cacao’s responses to abiotic stresses, highlight the resources that are available to answer them, and identify synergies and complementarities.

The report also helps to identify key research questions and partners for the development of a proposal for an international/multi-institutional research programme, to be implemented over the next three to five years, as part of the Collaborative Framework for Cacao Evaluation (CFCE). Although future climatic predictions are worrisome, the genetic materials held within national and international collections offer much potential in the development of improved planting material. The objective of the report is to gather as much information as possible, so that we can aim to maximize the resilience of cacao through the discovery and use of improved planting material, in combination with improved management practices.

The authors express gratitude to all of those who provided details of thier research on cacao genetic resources and abiotic stress and acknowledge financial support of WCF and its Feed the Future Partnership for Climate Smart Cocoa, through a grant to Bioversity International from USDA-FAS, the ECA/CAOBISCO/FCC Joint Working Group on Cocoa Quality and Productivity; and the CGIAR Research Program on Forests, Trees and Agroforestry (FTA).


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun

Cocoa agroforestry is less resilient to sub-optimal and extreme climate than cocoa in full sun


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Cocoa agroforestry is perceived as potential adaptation strategy to sub-optimal or adverse environmental conditions such as drought. We tested this strategy over wet, dry and extremely dry periods comparing cocoa in full sun with agroforestry systems: shaded by (i) a leguminous tree species, Albizia ferruginea and (ii) Antiaris toxicaria, the most common shade tree species in the region.

We monitored micro-climate, sap flux density, throughfall, and soil water content from November 2014 to March 2016 at the forest-savannah transition zone of Ghana with climate and drought events during the study period serving as proxy for projected future climatic conditions in marginal cocoa cultivation areas of West Africa. Combined transpiration of cocoa and shade trees was significantly higher than cocoa in full sun during wet and dry periods. During wet period, transpiration rate of cocoa plants shaded by A. ferruginea was significantly lower than cocoa under A. toxicaria and full sun. During the extreme drought of 2015/16, all cocoa plants under A. ferruginea died. Cocoa plants under A. toxicaria suffered 77% mortality and massive stress with significantly reduced sap flux density of 115 g cm−2 day−1, whereas cocoa in full sun maintained higher sap flux density of 170 g cm−2 day−1. Moreover, cocoa sap flux recovery after the extreme drought was significantly higher in full sun (163 g cm−2 day−1) than under A. toxicaria (37 g cm−2 day−1).

Soil water content in full sun was higher than in shaded systems suggesting that cocoa mortality in the shaded systems was linked to strong competition for soil water. The present results have major implications for cocoa cultivation under climate change. Promoting shade cocoa agroforestry as drought resilient system especially under climate change needs to be carefully reconsidered as shade tree species such as the recommended leguminous A. ferruginea constitute major risk to cocoa functioning under extended severe drought.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Baseline for assessing the impact of fairtrade certification on cocoa farmers and cooperatives in Ghana

Baseline for assessing the impact of fairtrade certification on cocoa farmers and cooperatives in Ghana


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Côte d’ Ivoire and Ghana, the two biggest Fairtrade cocoa producers in West Africa, provide about 68 percent of the Fairtrade cocoa that is sold under Fairtrade terms in global markets. In 2013, the volume of Fairtrade cocoa from West Africa reached 133 400 t, involving some 71 cooperatives and producer associations and 138 800 farmers. Most Fairtrade cocoa from West Africa originates from Côte d’Ivoire (CDI) and Ghana, the latter being the subject of this report.

Fairtrade cocoa in Ghana has expanded rapidly in recent years: between 2009 and 2014, sales increased from 481 to 54 600 tonnes, while the number of Fairtrade cooperative unions grew from only one in 2009 to 11 in 2014. The expanding Fairtrade cocoa sector in Ghana faces many of the same challenges as the West African cocoa sector as a whole, including low productivity and poverty in farming communities, limited infrastructure, a rapidly aging farming population, lack of electricity and portable water, and few examples of strong rural cooperatives or other forms of smallholder business organizations.

In this context, important questions arise, such as: What are the capacities and the potential of cooperatives and resource-poor farmers to benefit from participation in Fairtrade certification? How can Fairtrade and partners help address the constraints and opportunities faced by cocoa growers, cooperatives and other players in the cocoa chain?


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Fairtrade cocoa in Ghana: taking stock and looking ahead

Fairtrade cocoa in Ghana: taking stock and looking ahead


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Overview

Some of the global chocolate industry’s biggest players, such as Ferrero, Mars, and Hershey, have expressed their commitment to achieve a sustainable cocoa sector by the year 2020.

As the world’s second largest producer of cocoa, Ghana is also interested in moving towards sustainable cocoa production. Voluntary standards systems, such as Fairtrade, play an important role in providing independent third-party evidence of progress towards sustainability. Fairtrade does so by offering a framework for producers and buyers to engage in more equitable business relations, with reduced price risks for farmers and opportunities for cooperative and community development through investments enabled by the Fairtrade premium.

Over the past years, Fairtrade has significantly advanced in Ghana’s cocoa sector. Between 2009 and 2014, annual volumes of Fairtrade cocoa produced in the country increased from 481 MT to 54,600 MT. This impressive growth is linked to the evolution of Kuapa Kokoo as leading cocoa cooperative, and to the creation of numerous new cooperatives that obtained Fairtrade certification over the past few years. Founded in 1993 and Fairtrade certified since 1995, Kuapa Kokoo has grown into the world’s largest Fairtrade certified cocoa cooperative.

Journal article published in Sweet Vision, Vol. 61 (3), p. 14-17.


Back to top

Sign up to our monthly newsletter

Connect with us