Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Integrating bioenergy and food production on degraded landscapes in Indonesia for improved socioeconomic and environmental outcomes

Integrating bioenergy and food production on degraded landscapes in Indonesia for improved socioeconomic and environmental outcomes


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Growing bioenergy crops on degraded and underutilized land is a promising solution to meet the requirement for energy security, food security, and land restoration. This paper assesses the socioeconomic and environmental benefits of agroforestry systems based on nyamplung (tamanu) (Calophyllum inophyllum L.) in the Wonogiri district of Central Java, Indonesia. Data were collected through field observations and focus group discussions involving 20 farmers who intercrop nyamplung with maize, rice, and peanuts and utilize the species in honey production. Calculating each crop’s net present value (NPV) demonstrates that when grown as monocultures, staple crops rice and peanuts lead to negative profitability, while maize generates only a marginal profit; yet honey production utilizing nyamplung produces a NPV nearly 300 times greater than maize. However, when utilizing nyamplung, honey is also the commodity most sensitive to decreases in production, followed by nyamplung peanut and nyamplung rice combinations. While decreases in production have little effect on the NPVs of rice, peanuts, and maize, these annual crops can only be cultivated for a maximum of 6 years within the nyamplung’s 35-year cycle, due to canopy closure after this time. Nyamplung-based agroforestry systems can provide economic, social, and environmental gains on different scales. However, when considering the high profit potential of nyamplung combined with honey production, further research is needed to improve and develop bee husbandry practices so this becomes a viable option for local farmers.


Notice: Undefined index: id in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 3
  • Home
  • Accurate crop yield predictions from modelling tree-crop interactions in gliricidia-maize agroforestry

Accurate crop yield predictions from modelling tree-crop interactions in gliricidia-maize agroforestry


Notice: Undefined variable: id_overview in /home/ft4user/foreststreesagroforestry.org/wp-content/themes/FTA/template-parts/content.php on line 64
Posted by

FTA COMMUNICATIONS TEAM

Agroforestry systems, containing mixtures of trees and crops, are often promoted because the net effect of interactions between woody and herbaceous components is thought to be positive if evaluated over the long term. From a modelling perspective, agroforestry has received much less attention than monocultures. However, for the potential of agroforestry to impact food security in Africa to be fully evaluated, models are required that accurately predict crop yields in the presence of trees.

The positive effects of the fertiliser tree gliricidia (Gliricidia sepium) on maize (Zea mays) are well documented and use of this tree-crop combination to increase crop production is expanding in several African countries. Simulation of gliricidia-maize interactions can complement field trials by predicting crop response across a broader range of contexts than can be achieved by experimentation alone. We tested a model developed within the APSIM framework. APSIM models are widely used for one dimensional (1D), process-based simulation of crops such as maize and wheat in monoculture. The Next Generation version of APSIM was used here to test a 2D agroforestry model where maize growth and yield varied spatially in response to interactions with gliricidia.

The simulations were done using data for gliricidia-maize interactions over two years (short-term) in Kenya and 11 years (long-term) in Malawi, with differing proportions of trees and crops and contrasting management. Predictions were compared with observations for maize grain yield, and soil water content. Simulations in Kenya were in agreement with observed yields reflecting lower observed maize germination in rows close to gliricidia. Soil water content was also adequately simulated, except for a tendency for slower simulated drying of the soil profile each season. Simulated maize yields in Malawi were also in agreement with observations.

Trends in soil carbon over a decade were similar to those measured, but could not be statistically evaluated. These results show that the agroforestry model in APSIM Next Generation adequately represented tree-crop interactions in these two contrasting agro-ecological conditions and agroforestry practices. Further testing of the model is warranted to explore tree-crop interactions under a wider range of environmental conditions.


Back to top

Sign up to our monthly newsletter

Connect with us